

## **Estatística II**

Licenciatura em Gestão do Desporto 2.º Ano/2.º Semestre 2024/2025

## Aulas Teórico-Práticas N.º 18 e 19 (Semana 10)

**Docente**: Elisabete Fernandes

**E-mail**: efernandes@iseg.ulisboa.pt





## **Conteúdos Programáticos**

#### Aulas Teórico-Práticas (Semanas 1 a 3)

 Capítulo 1: Revisões e Distribuições de Amostragem

#### Aulas Teórico-Práticas (Semanas 4 a 7)

• Capítulo 2: Estimação

#### Aulas Teórico-Práticas (Semanas 7 a 9)

•Capítulo 3: Testes de Hipóteses

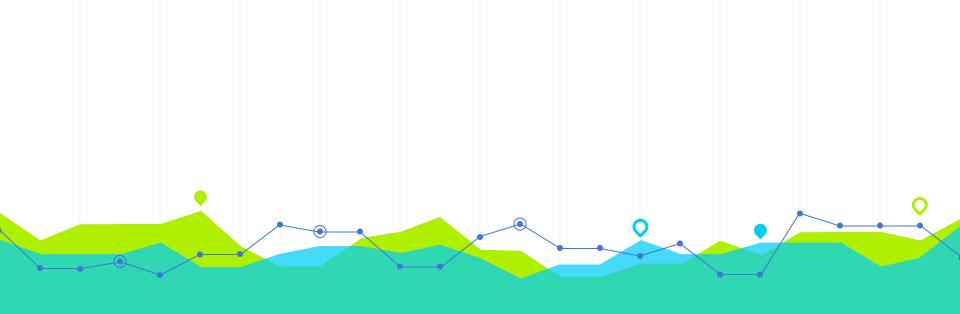
#### Aulas Teórico-Práticas (Semanas 10 a 13)

•Capítulo 4: Modelo de Regressão Linear Múltipla

**Material didático:** Exercícios do Livro Murteira et al (2015), Formulário e Tabelas Estatísticas

**Bibliografia**: B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta e F. Pimenta; Introdução à Estatística, 2ª ed., Escolar Editora, 2015.

https://cas.iseg.ulisboa.pt



# Testes de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Conhecidas)

Hipóteses, Estatística de Teste e Decisão (Amostras Independentes)

## Teste para a Diferença de Valores Médios (2 Amostras Independentes)

O **teste para 2 amostras independentes** também é conhecido como teste *t* não-emparelhado

- Permite a **comparação de dois valores médios** usando amostras representativas de duas populações independentes.
- Os indivíduos são escolhidos **aleatoriamente** da população.
- As duas amostras são independentes.
- Deve-se saber se as **variâncias** são aproximadamente **iguais** (homocedasticidade) ou **não** (heterocedasticidade).
- Suposição deste teste é: A variável de interesse deve ter distribuição Normal em cada uma das populações (das quais as amostras foram

recolhidas).



## IC para $\mu_1$ - $\mu_2$ : Formulário

### Variância corrigida

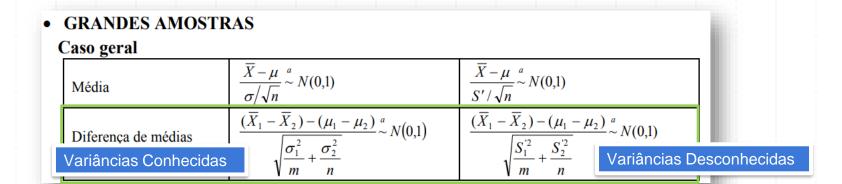
$$S'^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

#### • POPULAÇÕES NORMAIS

Relação de variâncias

|            | TOTULAÇOES NOK        | MAIS                                                                                                                                               |                                                                                                                        |
|------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|            | Média                 | $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$                                                                                         | $\frac{\overline{X} - \mu}{S'/\sqrt{n}} \sim t(n-1)$                                                                   |
|            | Diferença de médias   | $\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0,1)$ Variâncias Conhecidas | $Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{m} + \frac{S_2'^2}{n}}} \sim t(v)$ |
|            |                       | = = .                                                                                                                                              | onde $\nu$ é o maior inteiro contido em $r$ ,                                                                          |
| Variâncias | Desconhecidas e Iguai | $\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{1}{1} + \frac{1}{1}}}$                                               | $\left(\frac{{s_1'}^2}{m} + \frac{{s_2'}^2}{n}\right)^2$                                                               |
|            |                       | $T = \frac{\frac{X_1 - X_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{(m-1)S_1'^2 + (n-1)S_2'^2}{m+n-2}}} \sim t(m+n-2)$    | $r = \frac{1}{\frac{1}{m-1} \left(\frac{s_1'^2}{m}\right)^2 + \frac{1}{n-1} \left(\frac{s_2'^2}{n}\right)^2}$          |
|            | Variância             | $\frac{nS^{2}}{\sigma^{2}} = \frac{(n-1)S'^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$                                                                    | Variâncias Desconhecidas e Diferente                                                                                   |

## IC para $\mu_1$ - $\mu_2$ : Formulário



## Estatísticas de Teste t para a Diferença de Valores Médios (2 Amostras Independentes)

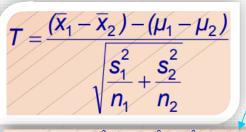
Variâncias iguais e desconhecidas:

$$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim t_{(n_1 + n_2 - 2)}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
s: desvio padrão conjunto

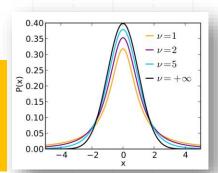
$$s_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

Variâncias diferentes e desconhecidas:



 $v = \frac{\left[ \left( s_1^2 / n_1 \right) + \left( s_2^2 / n_2 \right) \right]^2}{\left[ \left( s_1^2 / n_1 \right)^2 / \left( n_1 - 1 \right) + \left( s_2^2 / n_2 \right)^2 / \left( n_2 - 1 \right) \right]}$ 

Nota: Esta variável T tem distribuição t-Student com v graus de liberdade (g.l.'s). O valor dos g.l. ´s é calculado através desta fórmula, sendo arredondado para baixo para o inteiro mais próximo.



Nos primeiros 6 meses de vida dois grupos aleatórios de crianças seguiram esquemas de alimentação diferentes: o grupo 1 seguiu o esquema A e o grupo 2 seguiu o esquema B. No quadro seguinte apresentam-se os ganhos em peso, em kg, dessas crianças.

| Grupo 1 | 2,7 | 3,2 | 3,6 | 4,1 | 2,7 | 3,2 | 4,5 | 3,6 | 2,7 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Grupo 2 | 4,1 | 4,5 | 3,6 | 2,7 | 3,6 | 3,2 | 4,1 |     |     |

 ${\it Sabe-se\ que\ as\ crianças\ dos\ dois\ grupos\ tinham,\ ao\ nascer,\ aproxima damente\ pesos\ iguais.}$ 

Admita que as distribuições dos pesos seguem a distribuição Normal com variâncias 0,36 e 0,32, respectivamente.

- a) Ao nível de significância de 1%, poderá afirmar que o ganho médio em peso das crianças alimentadas segundo o esquema A é:
  - i. Igual ao das crianças alimentadas segundo o esquema B?
  - ii. Superior ao das crianças alimentadas segundo o esquema B?
  - iii. Inferior ao das crianças alimentadas segundo o esquema B?
- b) A partir de que nível de significância rejeita cada uma das hipóteses anteriores?



## Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Conhecidas)

#### Sejam:

- $X_1$  a v.a. que representa o ganho em peso, em kg, das crianças alimentadas segundo o esquema A,
- $X_2$  a v.a. que representa o ganho em peso, em kg, das crianças alimentadas segundo o esquema B, com  $X_1 \sim N(\mu_1 = ?; \sigma_1 = \sqrt{0.36})$  e  $X_2 \sim N(\mu_2 = ?; \sigma_2 = \sqrt{0.32})$ .

$$n_1 = 9,$$
  $\overline{x}_1 = 3,3367;$   $n_2 = 7,$   $\overline{x}_2 = 3,6857.$ 

a)  $\alpha = 1\%$ .

ProbabilidadesEstatistica\_2019 (uevora.pt)

## Exercício (a) (i): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Conhecidas)

i) 
$$\mu_1 = \mu_2$$
?

### **Hipóteses:**

 $H_0: \mu_1 = \mu_2 \ vs \ H_1: \mu_1 \neq \mu_2$  $\Leftrightarrow H_0: \mu_1 - \mu_2 = 0 \ vs \ H_1: \mu_1 - \mu_2 \neq 0$  (teste bilateral).

Estatística de teste:

#### **Estatística de Teste:**

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0; 1).$$

$$z_{obs} = \frac{(3,3667 - 3,6857) - 0}{\sqrt{\frac{0,36}{9} + \frac{0,32}{7}}} = -1,0896.$$

Pela tabela  $z_{1-\frac{\alpha}{2}} = z_{0,995} = 2,576$ .

Decisão (pela região de rejeição):

Logo,  $R.A.: ]-2,576; 2,576[e R.R.:]-\infty; -2,576] \cup [2,576; +\infty[.$ 

Como  $z_{obs} \in R.A$ . não rejeitar  $H_0$ . Portanto, ao nível de significância de 1%, não existe evidência estatística de que o ganho médio em peso das crianças alimentadas segundo o esquema A seja diferente do das crianças alimentadas segundo o esquema B.

## Exercício (a) (ii): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Conhecidas)

ii) 
$$\mu_1 > \mu_2$$
?

**Hipóteses:** 
$$H_0: \mu_1 \le \mu_2 \ vs. H_1: \mu_1 > \mu_2 \Leftrightarrow H_0: \mu_1 - \mu_2 \le 0 \ vs. H_1: \mu_1 - \mu_2 > 0$$
 (teste unilateral direito).

Estatística de teste:

#### **Estatística de Teste:**

$$Z = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0; 1).$$
Decisão (pela região de rejeição):

Como a estatística de teste é a mesma da alínea anterior,  $z_{obs} = -1,0896$ .

Pela tabela 
$$z_{1-\alpha} = z_{0.99} = 2,326$$
. Logo,  $R.A.: ]-\infty; 2,326$  [ e  $R.R.: [2,326; +\infty[$ .

Como  $z_{obs} \in R.A.$  não rejeitar  $H_0$ . Portanto, ao nível de significância de 1%, não existe evidência estatística de que o ganho médio em peso das crianças alimentadas segundo o esquema A seja superior ao das crianças alimentadas segundo o esquema B.

## Exercício (a) (iii): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Conhecidas)

### Hipóteses:

iii) 
$$\mu_1 < \mu_2$$
?

 $H_0$ :  $\mu_1 \ge \mu_2 \ vs \ H_1$ :  $\mu_1 < \mu_2 \Leftrightarrow H_0$ :  $\mu_1 - \mu_2 \ge 0 \ vs \ H_1$ :  $\mu_1 - \mu_2 < 0$  (teste unilateral esquerdo).

Estatística de teste: 
$$Z = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0; 1).$$

#### **Estatística de Teste:**

### Decisão (pela região de rejeição):

Como a estatística de teste é a mesma da alínea anterior,  $z_{obs} = -1,0896$ .

Pela tabela  $z_{1-\alpha} = z_{0.99} = 2,326$ . Logo,  $R.A.: ]-2,326; +\infty[e\ R.R.: ]-\infty; -2,326].$ 

Como  $z_{obs} \in R.A$ . não rejeitar  $H_0$ . Portanto, ao nível de significância de 1%, não existe evidência estatística de que o ganho médio em peso das crianças alimentadas segundo o esquema A seja inferior ao das crianças alimentadas segundo o esquema B.

## Exercício (b) (i) e (ii): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Conhecidas)

b) valor  $p = P(\text{Rejeitar } H_0 | H_0 \text{ \'e verdadeira}) = P(Z_{obs} \in R.R. | \mu = \mu_0).$ 

i) valor 
$$p = 2 \times P(Z \ge |z_{obs}|) = 2 \times P(Z \ge 1,0896) = 2 \times (1 - \Phi(1,0896))$$
  
=  $2 \times (1 - 0,8621) = 0,2758$ .

Decisão (pela valor-p):

A hipótese  $H_0$ :  $\mu_1=\mu_2$  é rejeitada para níveis de significância superiores ou iguais a 27,58%, logo não é rejeitada para qualquer nível de significância usual em investigação: não existe evidência estatística de que o ganho médio de peso das crianças alimentadas segundo o esquema A seja diferente do das crianças alimentadas segundo o esquema B.

ii) valor 
$$p = P(Z \ge z_{obs}) = P(Z \ge -1,0896) = 1 - \Phi(-1,0896)$$
  
=  $1 - (1 - \Phi(1,0896)) = \Phi(1,0896) = 0,8621$ .

Decisão (pela valor-p):

Alternativa, com base no valor p bilateral calculado na alínea i): substituindo em  $H_1$   $\mu_1$  e  $\mu_2$  por  $\overline{x}_1$  e  $\overline{x}_2$ , respectivamente,  $\overline{x}_1 - \overline{x}_2 = 3.3367 - 3.6857 > 0$  dá uma proposição falsa. Logo,

valor 
$$p_{uni} = 1 - \frac{0,2758}{2} = 0,8621.$$

A hipótese  $H_0$ :  $\mu_1 \le \mu_2$  é rejeitada para níveis de significância superiores ou iguais a 86,21%. Assim, não existe evidência estatística de que o ganho médio de peso das crianças alimentadas segundo o esquema A seja superior ao das crianças alimentadas segundo o esquema B.

## Exercício (b) (iii): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Conhecidas)

### Decisão (pela valor-p):

iii) valor 
$$p = P(Z \le z_{obs}) = P(Z \le -1,0896) = \Phi(-1,0896) = 1 - \Phi(1,0896)$$
  
= 1 - 0,8621 = 0,1379.

Alternativa, com base no valor p bilateral calculado na alínea i): substituindo em  $H_1$   $\mu_1$  e  $\mu_2$  por  $\overline{x}_1$  e  $\overline{x}_2$ , respectivamente,  $\overline{x}_1 - \overline{x}_2 = 3{,}3367 - 3{,}6857 > 0$  dá uma proposição verdadeira. Logo,

valor 
$$p_{uni} = \frac{0.2758}{2} = 0.1379$$
.

A hipótese  $H_0$ :  $\mu_1 \ge \mu_2$  é rejeitada para níveis de significância superiores ou iguais a 13,79%: não existe evidência estatística de que o ganho médio de peso das crianças alimentadas segundo o esquema A seja inferior ao das crianças alimentadas segundo o esquema B.

ProbabilidadesEstatistica 2019 (uevora.pt)

Murteira et al (2015) Capítulo 8

31. Uma repartição de Finanças tem dois funcionários a receber declarações de IRS. Admita que o tempo que cada funcionário leva a atender uma pessoa tem distribuição normal, com desvios padrões iguais a 2 minutos. O Sr. Antunes, ao chegar para entregar a sua declaração, nota que a fila junto ao balcão A tem 20 pessoas, enquanto a fila junto ao balcão B tem 15 pessoas, e opta, naturalmente, por esta. Ao começar a ser atendido (um hora e quinze minutos depois) repara que a vigésima pessoa da fila ao lado tinha justamente acabado de ser atendida. Pode afirmar-se que o tempo médio gasto pelos dois funcionários a atender uma pessoa é idêntico? (Considere as dimensões 0.05 e 0.1).



$$X_{A} \sim N(\mu_{A}, 2^{2}) \quad m_{A} = 20 \quad \overline{Z}_{A} = \frac{75}{20} = 3.75$$
 $X_{B} \sim N(\mu_{B}, 2^{2}) \quad m_{B} = 15 \quad \overline{Z}_{B} = \frac{75}{15} = 5$ 

$$H_0: \mu_A - \mu_B = 0$$
 VS  $H_1: \mu_A - \mu_B \neq 0$ 

$$a_1 = 0.05$$
  $a_2 = 0.1$ 

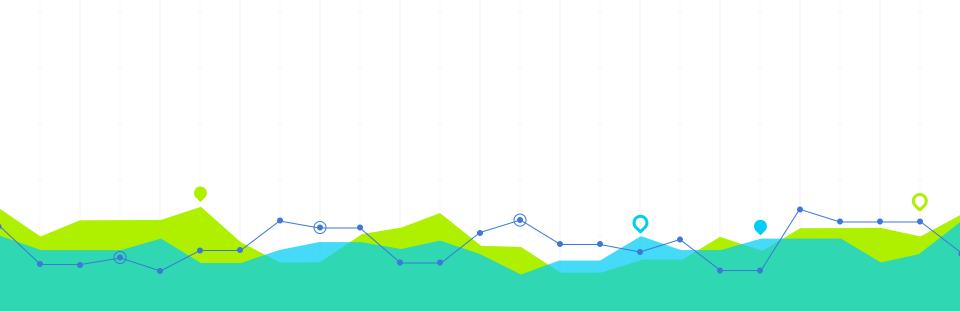
$$Z = \frac{\overline{X}_A - \overline{X}_B - (M_{Ao} - M_{Bo})}{\sqrt{\frac{\overline{V}_A^2}{M_A} + \frac{\overline{V}_B^2}{M_B}}} N N(0,1)$$

Dob Ho, 
$$Z = \frac{\overline{X}_A - \overline{X}_B}{\sqrt{\frac{\overline{V}_A^2}{M_A} + \frac{\overline{V}_B^2}{M_B}}} N N(0,1)$$

$$3.75 - 5$$
  $\simeq -1.$ 

Poles = 
$$2P(Z > |Sobs|) = 2P(Z > 1.83) =$$
  
=  $2(1-\overline{p}(1.83)) = 2(1-0.9664) =$   
=  $0.0672$ 

Poles >  $\alpha_1 = 0.05$  mas se rejeita Ho. Poles <  $\alpha_2 = 0.1$  rejeita - se Ho.



## Testes de Hipóteses para μ<sub>1</sub> - μ<sub>2</sub> (Variâncias Desconhecidas e Iguais)

Hipóteses, Estatística de Teste e Decisão (Amostras Independentes)

Um determinado método de análise permite determinar o conteúdo de enxofre no petróleo bruto. Os ensaios efectuados em 10 e 8 amostras aleatórias de 1 kg de petróleo bruto, provenientes de furos pertencentes respectivamente aos campos A e B, revelaram os seguintes resultados (em gramas):

| Campo A: | 111 | 114 | 105 | 112 | 107 | 109 | 112 | 110 | 110 | 106 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Campo B: | 109 | 103 | 101 | 105 | 106 | 108 | 110 | 104 |     |     |

- a) Ao nível de significância de 10%, poderá afirmar que, em média, quantidade de enxofre por quilograma de petróleo do campo A é:
  - i. Igual à do campo B?
  - ii. Superior à do campo B?
  - iii. Inferior à do campo B?
- b) Calcule o valor p associado a cada um dos testes anteriores.



## Exercício (a) (i): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Iguais)

#### Sejam:

- $X_1$  a v.a. que representa a quantidade de enxofre por quilograma de petróleo do campo A,
- X<sub>2</sub> a v.a. que representa a quantidade de enxofre por quilograma de petróleo do campo B. Nada é referido sobre a distribuição de  $X_1$  e  $X_2$ .

$$n_1 = 10$$
,  $\overline{x}_1 = 109,6$  e  $s_1 = 2,875$ ,  $n_2 = 8$ ,  $\overline{x}_2 = 105,75$  e  $s_2 = 3,105$ .

a)  $\alpha = 10\%$ .

i) 
$$\mu_1 = \mu_2$$
?

### i) $\mu_1 = \mu_2$ ? Hipóteses:

$$H_0: \mu_1 = \mu_2 \ vs \ H_1: \mu_1 \neq \mu_2$$
  
 $\Leftrightarrow H_0: \mu_1 - \mu_2 = 0 \ vs \ H_1: \mu_1 - \mu_2 \neq 0$  (teste bilateral).

Para saber decidir qual a estatística de teste a utilizar, é preciso validar os pressupostos subjacentes:

Normalidade:

## Exercício (a) (i): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Iguais)

Igualdade das variâncias:

O I. C. a 90% para  $\frac{\sigma_1^2}{\sigma_2^2}$  é dado por:

$$\frac{S_1^2}{S_2^2} \frac{1}{F_{n_1-1;n_2-1;\,1-\frac{\alpha}{2}}}; \frac{S_1^2}{S_2^2} F_{n_2-1;n_1-1;\,1-\frac{\alpha}{2}} \right|.$$
 Ver Tabela no Slide a seguir

Substituindo os valores, sendo  $F_{9;7;0,95} = 3,68 \text{ e } F_{7;9;0,95} = 3,29$ , obtém-se:

$$\left| \frac{2,875^2}{3,105^2} \times \frac{1}{3,68}; \frac{2,875^2}{3,105^2} \times 3,29 \right| = ]0,2332; 2,8230[.$$

Como 1 pertence ao intervalo obtido, ao nível de significância de 10% não há evidências de que  $\sigma_1^2$  seja diferente de  $\sigma_2^2$ . Portanto, pode-se considerar que  $\sigma_1^2 = \sigma_2^2$ .

## Cálculo do Quantil da Distribuição F-Snedecor de Probabilidade

 $F_{m,n,\varepsilon}: P(X > F_{m,n,\varepsilon}) = \varepsilon$ 

 $1-\alpha/2$  e com n1 e n2 g.l.'s

 $F_{9;7;0,95} = 3,68 \text{ e } F_{7;9;0,95} = 3,29,$ 

|    |                                   |   |                                     |                                      |                                      |                                      |                                      |                                      |                                      | با الح                               | •                                    | 7 7                                  | •                                    |                                      |                                      |                                      |                                      |                                       |                                       | m,n,e                                 |                                       |                                       |
|----|-----------------------------------|---|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|    |                                   | _ | m - graus de liberdade do numerador |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                       |                                       |                                       |                                       |                                       |
| Ι. |                                   |   | ε                                   | 1                                    | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   | 12                                   | 15                                   | 20                                   | 24                                   | 30                                    | 40                                    | 60                                    | 120                                   | œ                                     |
|    |                                   | 1 | .100<br>.050<br>.025<br>.010        | 39.86<br>161.45<br>647.79<br>4052.18 | 49.50<br>199.50<br>799.48<br>4999.34 | 53.59<br>215.71<br>864.15<br>5403.53 | 55.83<br>224.58<br>899.60<br>5624.26 | 57.24<br>230.16<br>921.83<br>5763.96 | 58.20<br>233.99<br>937.11<br>5858.95 | 58.91<br>236.77<br>948.20<br>5928.33 | 59.44<br>238.88<br>956.64<br>5980.95 | 59.86<br>240.54<br>963.28<br>6022.40 | 60.19<br>241.88<br>968.63<br>6055.93 | 60.71<br>243.90<br>976.72<br>6106.68 | 61.22<br>245.95<br>984.87<br>6156.97 | 61.74<br>248.02<br>993.08<br>6208.66 | 62.00<br>249.05<br>997.27<br>6234.27 | 62.26<br>250.10<br>1001.40<br>6260.35 | 62.53<br>251.14<br>1005.60<br>6286.43 | 62.79<br>252.20<br>1009.79<br>6312.97 | 63.06<br>253.25<br>1014.04<br>6339.51 | 63.33<br>254.32<br>1018.26<br>6365.59 |
|    |                                   | 2 | .100<br>.050<br>.025<br>.010        | 8.53<br>18.51<br>38.51<br>98.50      | 9.00<br>19.00<br>39.00<br>99.00      | 9.16<br>19.16<br>39.17<br>99.16      | 9.24<br>19.25<br>39.25<br>99.25      | 9.29<br>19.30<br>39.30<br>99.30      | 9.33<br>19.33<br>39.33<br>99.33      | 9.35<br>19.35<br>39.36<br>99.36      | 9.37<br>19.37<br>39.37<br>99.38      | 9.38<br>19.38<br>39.39<br>99.39      | 9.39<br>19.40<br>39.40<br>99.40      | 9.41<br>19.41<br>39.41<br>99.42      | 9.42<br>19.43<br>39.43<br>99.43      | 9.44<br>19.45<br>39.45<br>99.45      | 9.45<br>19.45<br>39.46<br>99.46      | 9,46<br>19,46<br>39,46<br>99,47       | 9.47<br>19.47<br>39.47<br>99.48       | 9.47<br>19.48<br>39.48<br>99.48       | 9.48<br>19.49<br>39.49<br>99.49       | 9.49<br>19.50<br>39.50<br>99.50       |
|    | _                                 | 3 | .100<br>.050<br>.025<br>.010        | 5.54<br>10.13<br>17.44<br>34.12      | 5.46<br>9.55<br>16.04<br>30.82       | 5.39<br>9.28<br>15.44<br>29.46       | 5.34<br>9.12<br>15.10<br>28.71       | 5.31<br>9.01<br>14.88<br>28.24       | 5.28<br>8.94<br>14.73<br>27.91       | 5.27<br>8.89<br>14.62<br>27.67       | 5.25<br>8.85<br>14.54<br>27.49       | 5.24<br>8.81<br>14.47<br>27.34       | 5.23<br>8.79<br>14.42<br>27.23       | 5.22<br>8.74<br>14.34<br>27.05       | 5.20<br>8.70<br>14.25<br>26.87       | 5.18<br>8.66<br>14.17<br>26.69       | 5.18<br>8.64<br>14.12<br>26.60       | 5.17<br>8.62<br>14.08<br>26.50        | 5.16<br>8.59<br>14.04<br>26.41        | 5.15<br>8.57<br>13.99<br>26.32        | 5.14<br>8.55<br>13.95<br>26.22        | 5.13<br>8.53<br>13.90<br>26.13        |
|    | graus de liberdade do denominador | 4 | .100<br>.050<br>.025<br>.010        | 4.54<br>7.71<br>12.22<br>21.20       | 4.32<br>6.94<br>10.65<br>18.00       | 4.19<br>6.59<br>9.98<br>16.69        | 4.11<br>6.39<br>9.60<br>15.98        | 4.05<br>6.26<br>9.36<br>15.52        | 4.01<br>6.16<br>9.20<br>15.21        | 3.98<br>6.09<br>9.07<br>14.98        | 3.95<br>6.04<br>8.98<br>14.80        | 3.94<br>6.00<br>8.90<br>14.66        | 3.92<br>5.96<br>8.84<br>14.55        | 3.90<br>5.91<br>8.75<br>14.37        | 3.87<br>5,86<br>8.66<br>14.20        | 3.84<br>5.80<br>8.56<br>14.02        | 3.83<br>5.77<br>8.51<br>13.93        | 3.82<br>5.75<br>8.46<br>13.84         | 3.80<br>5.72<br>8.41<br>13.75         | 3.79<br>5.69<br>8.36<br>13.65         | 3.78<br>5.66<br>8.31<br>13.56         | 3.76<br>5.63<br>8.26<br>13.46         |
|    | iberdade do                       | 5 | .100<br>.050<br>.025<br>.010        | 4.06<br>6.61<br>10.01<br>16.26       | 3.78<br>5.79<br>8.43<br>13.27        | 3.62<br>5.41<br>7.76<br>12.06        | 3.52<br>5.19<br>7.39<br>11.39        | 3.45<br>5.05<br>7.15<br>10.97        | 3.40<br>4.95<br>6.98<br>10.67        | 3.37<br>4.88<br>6.85<br>10.46        | 3.34<br>4.82<br>6.76<br>10.29        | 3.32<br>4.77<br>6.68<br>10.16        | 3.30<br>4.74<br>6.62<br>10.05        | 3.27<br>4.68<br>6.52<br>9.89         | 3.24<br>4.62<br>6.43<br>9.72         | 3.21<br>4.56<br>6.33<br>9.55         | 3.19<br>4.53<br>6.28<br>9.47         | 3.17<br>4.50<br>6.23<br>9.38          | 3.16<br>4.46<br>6.18<br>9.29          | 3.14<br>4.43<br>6.12<br>9.20          | 3.12<br>4.40<br>6.07<br>9.11          | 3.11<br>4.37<br>6.02<br>9.02          |
|    | 11                                | 6 | .100<br>.050<br>.025<br>.010        | 3.78<br>5.99<br>8.81<br>13.75        | 3.46<br>5.14<br>7.26<br>10.92        | 3.29<br>4.76<br>6.60<br>9.78         | 3.18<br>4.53<br>6.23<br>9.15         | 3.11<br>4.39<br>5.99<br>8.75         | 3.05<br>4.28<br>5.82<br>8.47         | 3.01<br>4.21<br>5.70<br>8.26         | 2.98<br>4.15<br>5.60<br>8.10         | 2.96<br>4.10<br>5.52<br>7.98         | 2.94<br>4.06<br>5.46<br>7.87         | 2.90<br>4.00<br>5.37<br>7.72         | 2.87<br>3.94<br>5.27<br>7.56         | 2.84<br>3.87<br>5.17<br>7.40         | 2.82<br>3.84<br>5.12<br>7.31         | 2.80<br>3.81<br>5.07<br>7.23          | 2.78<br>3.77<br>5.01<br>7.14          | 2.76<br>3.74<br>4.96<br>7.06          | 2.74<br>3.70<br>4.90<br>6.97          | 2.72<br>3.67<br>4.85<br>6.88          |
|    | u                                 | 7 | .100<br>.050<br>.025<br>.010        | 3.59<br>5.59<br>8.07<br>12.25        | 3.26<br>4.74<br>6.54<br>9.55         | 3.07<br>4.35<br>5.89<br>8.45         | 2.96<br>4.12<br>5.52<br>7.85         | 2.88<br>3.97<br>5.29<br>7.46         | 2.83<br>3.87<br>5.12<br>7.19         | 2.78<br>3.79<br>4.99<br>6.99         | 2.75<br>3.73<br>4.90<br>6.84         | 3.68<br>4.82<br>6.72                 | 2.70<br>3.64<br>4.76<br>6.62         | 2.67<br>3.57<br>4.67<br>6.47         | 2.63<br>3.51<br>4.57<br>6.31         | 2.59<br>3.44<br>4.47<br>6.16         | 2.58<br>3.41<br>4.41<br>6.07         | 2.56<br>3.38<br>4.36<br>5.99          | 2.54<br>3.34<br>4.31<br>5.91          | 2.51<br>3.30<br>4.25<br>5.82          | 2.49<br>3.27<br>4.20<br>5.74          | 2.47<br>3.23<br>4.14<br>5.65          |
|    |                                   | 8 | .100<br>.050<br>.025<br>.010        | 3.46<br>5.32<br>7.57<br>11.26        | 3.11<br>4.46<br>6.06<br>8.65         | 2.92<br>4.07<br>5.42<br>7.59         | 2.81<br>3.84<br>5.05<br>7.01         | 2.73<br>3.69<br>4.82<br>6.63         | 2.67<br>3.58<br>4.65<br>6.37         | 2.62<br>3.50<br>4.53<br>6.18         | 2.59<br>3.44<br>4.43<br>6.03         | 2.56<br>3.39<br>4.36<br>5.91         | 2.54<br>3.35<br>4.30<br>5.81         | 2.50<br>3.28<br>4.20<br>5.67         | 2.46<br>3.22<br>4.10<br>5.52         | 2.42<br>3.15<br>4.00<br>5.36         | 2.40<br>3.12<br>3.95<br>5.28         | 2.38<br>3.08<br>3.89<br>5.20          | 2.36<br>3.04<br>3.84<br>5.12          | 2.34<br>3.01<br>3.78<br>5.03          | 2.32<br>2.97<br>3.73<br>4.95          | 2.29<br>2.93<br>3.67<br>4.86          |
|    |                                   | 9 | .100<br>.050<br>.025<br>.010        | 3.36<br>5.12<br>7.21<br>10.56        | 3.01<br>4.26<br>5.71<br>8.02         | 2.81<br>3.86<br>5.08<br>6.99         | 2.69<br>3.63<br>4.72<br>6.42         | 2.61<br>3.48<br>4.48<br>6.06         | 2.55<br>3.37<br>4.32<br>5.80         | 2.51<br>3.29<br>1.20<br>5.61         | 2.47<br>3.23<br>4.10<br>5.47         | 2.44<br>3.18<br>4.03<br>5.35         | 2.42<br>3.14<br>3.96<br>5.26         | 2.38<br>3.07<br>3.87<br>5.11         | 2.34<br>3.01<br>3.77<br>4.96         | 2.30<br>2.94<br>3.67<br>4.81         | 2.28<br>2.90<br>3.61<br>4.73         | 2.25<br>2.86<br>3.56<br>4.65          | 2.23<br>2.83<br>3.51<br>4.57          | 2.21<br>2.79<br>3.45<br>4.48          | 2.18<br>2.75<br>3.39<br>4.40          | 2.16<br>2.71<br>3.33<br>4.31          |

## Exercício (a) (i): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias **Desconhecidas e Iguais)**

Deste modo, a estatística de teste a usar é:

Estatística de Teste: 
$$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2 = 10 + 8 - 2 = 16}.$$

$$t_{obs} = \frac{(109,6 - 105,75) - 0}{\sqrt{\frac{(10 - 1)2,875 + (8 - 1)3,105}{10 + 8 - 2}} \sqrt{\frac{1}{10} + \frac{1}{8}}} = 2,7255.$$

Pela tabela  $t_{n_1+n_2-2;\,1-\frac{\alpha}{2}}=t_{16\,;\,0,95}=1,746.$ 

Decisão (pela região de rejeição):

Logo,  $R.A.: ]-1,746; 1,746[e R.R.:]-\infty; -1,746] \cup [1,746; +\infty[.$ 

Como  $t_{obs} \in R.R.$  rejeitar  $H_0$ . Portanto, ao nível de significância de 10%, existe evidência estatística de que, em média, a quantidade de enxofre por quilograma de petróleo do campo A é diferente da do campo B.

## Exercício (a) (ii): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Iguais)

ii) 
$$\mu_1 > \mu_2$$
?

### ii) $\mu_1 > \mu_2$ ? Hipóteses:

$$H_0$$
:  $\mu_1 \le \mu_2 \ vs \ H_1$ :  $\mu_1 > \mu_2$   
 $\Leftrightarrow H_0$ :  $\mu_1 - \mu_2 \le 0 \ vs \ H_1$ :  $\mu_1 - \mu_2 > 0$  (teste unilateral direito).

Estatística de teste:

Estatística de Teste: 
$$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2 = 10 + 8 - 2 = 16}.$$

Como a estatística de teste é a mesma da alínea anterior,  $t_{obs} = 2,7255$ .

Pela tabela 
$$t_{n_1+n_2-2; 1-\alpha}=t_{16; 0,90}=1,337.$$
  
Logo,  $R.A.: ]-\infty; 1,337[eR.R.: [1,337; +\infty[.$ 

### Decisão (pela região de rejeição):

Como  $t_{obs} \in R.R.$  rejeitar  $H_0$ . Portanto, ao nível de significância de 10%, existe evidência estatística de que, em média, a quantidade de enxofre por quilograma de petróleo do campo A é superior à do campo B.

## Exercício (a) (iii): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Iguais)

iii) 
$$\mu_1 < \mu_2$$
?

### iii) $\mu_1 < \mu_2$ ? Hipóteses:

$$H_0$$
:  $\mu_1 \ge \mu_2 \ vs \ H_1$ :  $\mu_1 < \mu_2 \Leftrightarrow H_0$ :  $\mu_1 - \mu_2 \ge 0 \ vs \ H_1$ :  $\mu_1 - \mu_2 < 0$  (teste unilateral esquerdo).

#### Estatística de teste:

Estatística de Teste: 
$$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2 = 10 + 8 - 2 = 16}.$$

Como a estatística de teste é a mesma da alínea anterior,  $t_{obs} = 2,7255$ .

Pela tabela  $t_{n_1+n_2-2; 1-\alpha} = t_{16; 0,90} = 1,337.$ Logo,  $R.A.: ]-1,337; +\infty[e R.R.: ]-\infty; -1,337].$ 

### Decisão (pela região de rejeição):

Como  $t_{obs} \in R.A.$  não rejeitar  $H_0$ . Portanto, ao nível de significância de 10%, não existe evidência estatística de que, em média, a quantidade de enxofre por quilograma de petróleo do campo A seja inferior à do campo B.

## Exercício (b): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Iguais)

b) valor  $p = P(\text{Rejeitar } H_0 | H_0 \text{ é verdadeira}) = P(Z_{obs} \in R.R. | \mu = \mu_0).$ 

Decisão (pela valor-p):

i) valor 
$$p = 2 \times P(T \ge |t_{obs}|) = 2 \times P(T \ge 2,7255) = 2 \times (1 - P(T < 2,7255))$$
  
=  $2 \times (1 - 0,9925) = 0,015$ .

A hipótese  $H_0$ :  $\mu_1=\mu_2$  é rejeitada para níveis de significância superiores ou iguais a 1,5%. Logo, para um nível de significância de 5% existe evidência de que o teor médio de enxofre no campo A é diferente do campo B, mas para 1% essa afirmação já não pode ser sustentada. Repare-se que o valor p calculado é o valor indicado no quadro de resultados do SPSS anteriormente apresentado.

ii) valor  $p=P(T\geq t_{obs})=P(T\geq 2,7255)=1-P(T<2,7255)=1-0,9925=0,0075.$  Alternativa, com base no valor-p bilateral calculado na alínea i): substituindo em  $H_1$   $\mu_1$  e  $\mu_2$  por  $\overline{\chi}_1$  e  $\overline{\chi}_2$ , respectivamente,  $\overline{\chi}_1-\overline{\chi}_2=109,6-105,75>0$  dá uma proposição verdadeira. Logo,

$$valor-p_{uni} = \frac{0.015}{2} = 0.0075.$$

A hipótese  $H_0$ :  $\mu_1 \le \mu_2$  é rejeitada para níveis de significância superiores ou iguais a 0,75%. Assim, para qualquer nível de significância sensato/usual ( $\le 10\%$ ) existe evidência de que o teor médio de enxofre no campo A é superior ao do campo B.

iii) valor  $p = P(T \le t_{obs}) = P(T \le 2,7255) = 0,9925.$ 

Alternativa, com base no valor-p bilateral calculado na alínea i): substituindo em  $H_1$   $\mu_1$  e  $\mu_2$  por  $\overline{x}_1$  e  $\overline{x}_2$ , respectivamente,  $\overline{x}_1 - \overline{x}_2 = 109,6 - 105,75 > 0$  dá uma proposição falsa. Logo,

valor 
$$p_{uni} = 1 - \frac{0,015}{2} = 0,9925.$$

A hipótese  $H_0: \mu_1 \ge \mu_2$  é rejeitada para níveis de significância superiores ou iguais a 99,25. Assim, existe não existe evidência de que o teor médio de enxofre no campo A seja inferior ao do campo B.

ProbabilidadesEstatistica 2019 (uevora.pt)

34. Dois programas de alimentação de gado bovino são comparados. A variável aleatória X representa o aumento de peso (em kg) de um animal alimentado segundo o programa 1, durante um mês, enquanto Y traduz o aumento de peso (em kg) de um animal alimentado segundo o programa 2, durante igual período de tempo. Sabe-se que  $X \sim N(\mu_1, \sigma_1^2)$  e  $Y \sim N(\mu_2, \sigma_2^2)$ , e que as variáveis são independentes.

Um grupo de 8 animais foi submetido ao primeiro programa durante um mês, tendose obtido

$$\sum_{i=1}^{8} x_i = 416 \text{ e } \sum_{i=1}^{8} x_i^2 = 21807.$$

Outro grupo de 10 animais foi submetido ao segundo programa durante um mês, tendo-se obtido

$$\sum_{i=1}^{10} y_i = 468 \text{ e } \sum_{i=1}^{10} y_i^2 = 22172.$$

- a) Teste, ao nível de 0.05, a igualdade entre as variâncias.
- b) Teste, ao nível de 0.05, a igualdade entre os valores médios supondo variâncias iguais.
- c) Teste, ao nível de 0.05, a igualdade entre os valores médios supondo variâncias diferentes.
- d) Qual dos procedimentos adoptados nas alíneas anteriores, para testar a igualdade de médias, lhe parece mais adequado?



$$X \sim N (M_1, \sigma_1)$$
  $Y \sim N (M_2, \sigma_2^2)$   
 $m_1 = 8$   $m_2 = 10$   
 $\sum_{i=1}^{8} x_i = 416$   $\sum_{i=1}^{10} y_i = 468$   
 $\sum_{i=1}^{3} x_i^2 = 21807$   $\sum_{i=1}^{10} y_i^2 = 22172$ 

## Exercício 34 b)

b) 
$$x = 0.05$$
  $t_1^2 = t_2$ 

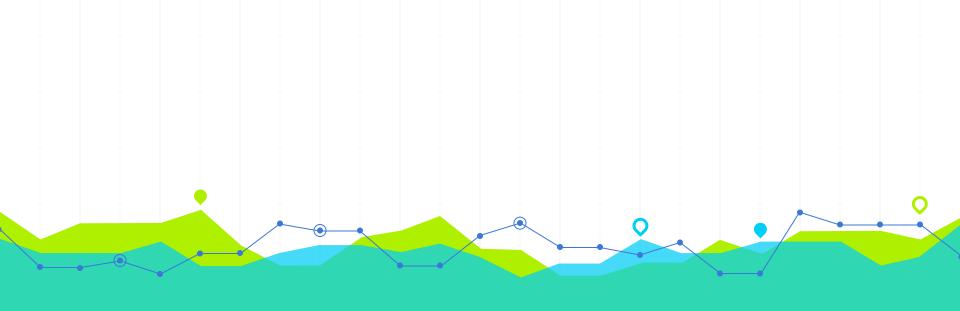
Ho:  $h_1 = h_2$   $VS$   $H_1$ :  $h_1 \neq h_2$ 

sob  $H_0$ ,  $T = \frac{(\overline{X} - \overline{Y}) / (\frac{1}{m_1} + \frac{1}{m_2})}{\sqrt{(m_1 - 1)S_1^{12} + (m_2 - 1)S_2^{12}}} \times t(m+m-2)$ 
 $t_1 = \frac{(m_1 - 1)S_1^{12} + (m_2 - 1)S_2^{12}}{\sqrt{(m_1 - 1)S_1^{12} + (m_2 - 1)S_2^{12}}} \simeq 2.0795$ 
 $t_2 = \frac{(416/8) - (468/10) / (\frac{1}{8} + \frac{1}{10})}{\sqrt{(7 \times 25) + (9 \times 29.96)}} \simeq 2.0795$ 

## Exercício 34 b)

$$W = \begin{cases} t_{obs}: |t_{obs}| > t_{16,0.025} \end{cases} = \begin{cases} t_{obs}: |t_{obs}| > 2.120 \end{cases}$$

$$t_{obs} = 2.0795 \notin W \text{ logo mão se rejeita Ho ao nivel de 0.05.}$$



# Testes de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Diferentes)

Hipóteses, Estatística de Teste e Decisão (Amostras Independentes)

3

Para um estudo sobre a caracterização da altura da população portuguesa, foi recolhida uma amostra de 1861 pessoas, com as seguintes características: (conjunto de dados semelhante ao disponibilizado no Capítulo 12, mas com uma amostra de maior dimensão):

#### **Group Statistics**

|        | Sexo      | N    | Mean   | Std. Deviation |
|--------|-----------|------|--------|----------------|
| Altura | Masculino | 853  | 168,46 | 7,617          |
|        | Feminino  | 1007 | 158,48 | 6,652          |

Supondo a Normalidade das distribuições e assumindo que as variâncias populacionais são desconhecidas e diferentes, verifique se se pode considerar que as alturas médias dos homens e das mulheres são iguais, com 95% de confiança.

- a) Suspeita que em média a altura dos homens não é igual à das mulheres. Teste esta hipótese ao nível de significância de 5%.
- b) Calcule o valor p associado ao teste da alínea anterior.
- c) Teste a hipótese de a média da altura dos homens ser superior à das mulheres, ao nível de significância de 0,5%?
- d) Determine o valor p associado ao teste anterior.
- e) Ao nível de significância de 2,5%, pode-se afirmar que em média a altura dos homens é superior à das mulheres?
- f) A partir de que nível de significância é rejeitada a hipótese do teste anterior?



## Exercício (a): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Diferentes)

#### Sejam:

- X<sub>1</sub> a v.a. que representa a altura dos homens,
- $X_2$  a v.a. que representa a altura das mulheres, com  $X_1 \sim N(\mu_1 = ?; \sigma_1 = ?)$  e  $X_2 \sim N(\mu_2 = ?; \sigma_2 = ?)$ , mas  $\sigma_1^2 \neq \sigma_2^2$ .

$$n_1 = 853$$
,  $\overline{x}_1 = 168,46$  e  $s_1 = 7,617$ ,  $n_2 = 1007$ ,  $\overline{x}_2 = 158,48$  e  $s_2 = 6,652$ .

#### **Hipóteses:**

a) 
$$\alpha = 5\%$$
,  $\mu_1 \neq \mu_2$ ?  
 $H_0: \mu_1 = \mu_2 \ vsH_1: \mu_1 \neq \mu_2$   
 $\Leftrightarrow H_0: \mu_1 - \mu_2 = 0 \ vsH_1: \mu_1 - \mu_2 \neq 0$  (teste bilateral).

Estatística de teste:

#### **Estatística de Teste:**

$$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\left[\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right]^2} \stackrel{\circ}{\sim} t_{\nu}, \text{ onde } v = \left[\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{S_2^2}{n_2}\right)^2}\right].$$

$$t_{obs} = \frac{(168,46 - 158,48) - 0}{\sqrt{\frac{7,617^2}{853} + \frac{6,652^2}{1007}}} = 29,816.$$

$$v = \left[ \frac{\left( \frac{7,617^2}{853} + \frac{6,652^2}{1007} \right)^2}{\frac{1}{853 - 1} \left( \frac{7,617^2}{853} \right)^2 + \frac{1}{1007 - 1} \left( \frac{6,652^2}{1007} \right)^2} \right] = [1705,6] = 1705.$$

Pela tabela  $t_{v; 1-\frac{\alpha}{2}} = t_{1705; 0,975} = 1,96.$ 

Logo,  $R.A.: ]-1,96; 1,96[e R.R.:]-\infty; -1,96] \cup [1,96; +\infty[.$ 

Decisão (pela região de rejeição):

Como  $t_{obs} \in R.R$ . rejeitar  $H_0$ . Portanto, ao nível de significância de 5%, existe evidência estatística de existe diferença significativa entre as médias das alturas dos homens e das mulheres.

ProbabilidadesEstatistica 2019 (uevora.pt)

## Exercício (b): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Diferentes)

### Decisão (pela valor-p):

b) valor 
$$p = 2 \times P(T \ge |t_{obs}|) = 2 \times P(T \ge 29,816) = 2 \times (1 - P(T < 29,816))$$
  
  $\approx 2 \times (1 - 1) = 0.$ 

Logo, aos níveis usuais de significância existe evidência de que a média das alturas dos homens difere das mulheres. Repare-se que o valor p calculado é o valor indicado no quadro de resultados do SPSS anteriormente apresentado.

### **Exercício (c):** Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Diferentes)

c) 
$$\alpha = 0.5\%$$
,  $\mu_1 > \mu_2$ ?

#### **Hipóteses:**

 $H_0: \mu_1 \leq \mu_2 \ vs \ H_1: \mu_1 > \mu_2$ 

 $\Leftrightarrow H_0: \mu_1 - \mu_2 \le 0 \ vs \ H_1: \mu_1 - \mu_2 > 0$  (teste unilateral direito).

Estatística de teste:

Estatística de Teste: 
$$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \stackrel{\circ}{\sim} t_v, \text{ onde } v = \left[\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{S_2^2}{n_2}\right)^2}\right].$$

Como a estatística de teste é a mesma da alínea anterior,  $t_{obs}=29,\!816$  e v=1705.

Pela tabela  $t_{v:1-\alpha} = t_{1705;0,995} = 2,576$ . Logo,  $R.A.: ]-\infty; 2,576[e R.R.: [2,576; +\infty[.$ 

#### Decisão (pela região de rejeição):

Como  $t_{obs} \in R.R.$  rejeitar  $H_0$ . Portanto, ao nível de significância de 0,5%, existe evidência estatística de que, em média, os homens são mais altos do que as mulheres.

# Exercício (d): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Diferentes)

#### Decisão (pela valor-p):

d) valor  $p=P(T\geq t_{obs})=P(T\geq 29,816~)=1-P(T<29,816~)\approx 1-1=0$ Alternativa, com base no valor-p bilateral calculado na alínea i): substituindo em  $H_1~\mu_1$  e  $~\mu_2$  por  $\overline{x}_1$  e  $\overline{x}_2$ , respectivamente,  $\overline{x}_1-\overline{x}_2=168,46-158,48>0$  dá uma proposição verdadeira. Logo,

valor 
$$p_{uni} \approx \frac{0}{2} = 0$$
.

A hipótese  $H_0$ :  $\mu_1 \le \mu_2$  é rejeitada para níveis de significância de aproximadamente 0. Assim, para qualquer nível de significância sensato/usual ( $\le 10\%$ ) existe evidência de que em média os homens são mais altos do que as mulheres.

### **Exercício (e):** Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Diferentes)

#### Hipóteses:

e) 
$$\alpha = 2.5\%$$
,  $\mu_1 < \mu_2$ ?

$$H_0\colon \mu_1\geq \mu_2\ vs\ H_1\colon \mu_1<\mu_2\\ \Leftrightarrow H_0\colon \mu_1-\mu_2\geq 0\ vs\ H_1\colon \mu_1-\mu_2<0\ (\text{teste unilateral esquerdo}).$$

Estatística de teste:

Estatística de Teste: 
$$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \stackrel{\circ}{\sim} t_v, \text{ onde } v = \left[\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{S_2^2}{n_2}\right)^2}\right].$$

Como a estatística de teste é a mesma da alínea anterior,  $t_{obs} = 29,816$  e v = 1705.

Pela tabela 
$$t_{v; 1-\alpha} = t_{1705; 0,975} = 1,96$$
.  
Logo,  $R.A.: ]-1,96; +\infty[e R.R.: ]-\infty; -1,96].$ 

#### Decisão (pela região de rejeição):

Como  $t_{obs} \in R.A.$  não rejeitar  $H_0$ . Portanto, ao nível de significância de 2,5%, não existe evidência estatística de que, em média, a altura dos homens seja inferior à das mulheres.

ProbabilidadesEstatistica 2019 (uevora.pt)

# Exercício (f): Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Variâncias Desconhecidas e Diferentes)

#### Decisão (pela valor-p):

f) valor  $p = P(T \le t_{obs}) = P(T \le 29,816) \approx 1$ .

Alternativa, com base no valor-p bilateral calculado na alínea i): substituindo em  $H_1$   $\mu_1$  e  $\mu_2$  por  $\overline{x}_1$  e  $\overline{x}_2$ , respectivamente,  $\overline{x}_1 - \overline{x}_2 = 168,46 - 158,48 > 0$  dá uma proposição falsa. Logo,

valor 
$$p_{uni} \approx 1 - \frac{0}{2} = 1$$
.

A hipótese  $H_0$ :  $\mu_1 \ge \mu_2$  é rejeitada para níveis de significância de aproximadamente 1. Assim, para qualquer nível de significância sensato/usual ( $\le 10\%$ ) não existe evidência de que em média a altura dos homens seja inferior à das mulheres.

34. Dois programas de alimentação de gado bovino são comparados. A variável aleatória X representa o aumento de peso (em kg) de um animal alimentado segundo o programa 1, durante um mês, enquanto Y traduz o aumento de peso (em kg) de um animal alimentado segundo o programa 2, durante igual período de tempo. Sabe-se que  $X \sim N(\mu_1, \sigma_1^2)$  e  $Y \sim N(\mu_2, \sigma_2^2)$ , e que as variáveis são independentes.

Um grupo de 8 animais foi submetido ao primeiro programa durante um mês, tendose obtido

$$\sum_{i=1}^{8} x_i = 416 \text{ e } \sum_{i=1}^{8} x_i^2 = 21807.$$

Outro grupo de 10 animais foi submetido ao segundo programa durante um mês, tendo-se obtido

$$\sum_{i=1}^{10} y_i = 468 \text{ e } \sum_{i=1}^{10} y_i^2 = 22172.$$

- a) Teste, ao nível de 0.05, a igualdade entre as variâncias.
- b) Teste, ao nível de 0.05, a igualdade entre os valores médios supondo variâncias iguais.
- c) Teste, ao nível de 0.05, a igualdade entre os valores médios supondo variâncias diferentes.
- d) Qual dos procedimentos adoptados nas alíneas anteriores, para testar a igualdade de médias, lhe parece mais adequado?



# Exercício 34

$$X \sim N (M_1, \sigma_1)$$
  $Y \sim N (M_2, \sigma_2^2)$   
 $m_1 = 8$   $m_2 = 10$   
 $\sum_{i=1}^{8} x_i = 416$   $\sum_{i=1}^{10} y_i = 468$   
 $\sum_{i=1}^{3} x_i^2 = 21807$   $\sum_{i=1}^{10} y_i^2 = 22172$ 

# Exercício 34 c)

C) 
$$\alpha = 0.05$$
  $\Gamma_{1} \neq \Gamma_{2}$   
 $H_{0}: M_{1} = M_{2} \quad vs \quad H_{1}: M_{1} \neq M_{2}$ 

Solo Ho, 
$$Z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_1^2}{m_1} + \frac{S_2^{12}}{m_2}}} \times t(n_0)$$

Com  $N = \text{floor} \left( \frac{\frac{S_1^2}{m_1} + \frac{S_2^2}{m_2}}{\frac{1}{m_1 - 1} \left( \frac{S_1^2}{m_1} \right)^2 + \frac{1}{m_2 - 1} \left( \frac{S_2^2}{m_2} \right)} \right)$ 

# Exercício 34 c) e d)

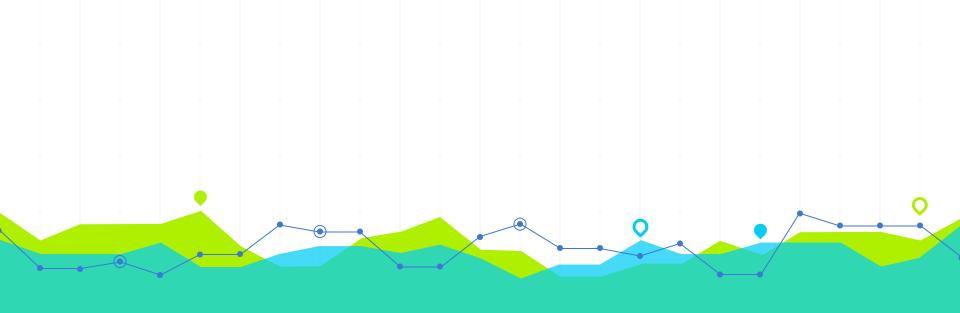
Temos 
$$N = \begin{cases} \frac{\left(\frac{25}{8} + \frac{29.96}{10}\right)^2}{\frac{1}{7}\left(\frac{25}{8}\right)^2 + \frac{1}{9}\left(\frac{29.96}{10}\right)^2} = 15 \end{cases}$$

$$W = \begin{cases} t_{obs}: |t_{obs}| > t_{15, 0.025} \end{cases} = \begin{cases} t_{obs}: |t_{obs}| > 2.131 \end{cases}$$

$$tobs = \frac{\overline{z} - \overline{y}}{\sqrt{\frac{\frac{1}{2}}{m_1} + \frac{\frac{1}{2}}{m_2}}} = \frac{(416/8) - (468/10)}{\sqrt{\frac{25}{8} + \frac{29.96}{10}}} \approx 2.10$$

t des € W logo mão se rejeita Ho ao nivel de 0.05.

d ) O procedimento adotado na alínea b) é mais adequado porque de acordo com o resultado da alínea a) a evidência empírica suporta a hipótese de igualdade de variâncias.



# Testes de Hipóteses para $\mu_1$ - $\mu_2$

Hipóteses, Estatística de Teste e Decisão (Amostras Emparelhadas)

### Hipóteses do Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Amostras Emparelhadas)

Considere-se agora o caso em que as duas amostras formam um par de observações  $(X_{1i}; X_{2i}), i = 1, ..., n$ , ou seja, trata-se de uma amostra emparelhada. Os pares de observações são independentes e retirados de populações Normais, com médias  $\mu_1$  e  $\mu_2$  e desvios padrão  $\sigma_1$  e  $\sigma_2$ , respectivamente. Neste caso, para testar a igualdade entre as médias populacionais, as hipóteses a formular são:

#### T. bilateral

#### Hipóteses a testar:

$$\begin{array}{lll} H_0\colon \mu_1 = \mu_2 \ vs \ H_1\colon \mu_1 \neq \mu_2 \\ \Leftrightarrow H_0\colon \mu_1 - \mu_2 = 0 \ vs \\ H_1\colon \mu_1 - \mu_2 \neq 0 \end{array} \qquad \begin{array}{ll} H_0\colon \mu_1 \leq \mu_2 \ vs \ H_1\colon \mu_1 > \mu_2 \\ \Leftrightarrow H_0\colon \mu_1 - \mu_2 \leq 0 \ vs \\ H_1\colon \mu_1 - \mu_2 > 0 \end{array}$$

#### T. unilateral direito

#### Hipóteses a testar:

$$\begin{aligned} & H_0: \mu_1 = \mu_2 \ vs \ H_1: \mu_1 \neq \mu_2 \\ & \Leftrightarrow H_0: \mu_1 - \mu_2 = 0 \ vs \\ & H_1: \mu_1 - \mu_2 \neq 0 \end{aligned} \qquad \begin{aligned} & H_0: \mu_1 \leq \mu_2 \ vs \ H_1: \mu_1 > \mu_2 \\ & \Leftrightarrow H_0: \mu_1 - \mu_2 \leq 0 \ vs \\ & H_1: \mu_1 - \mu_2 > 0 \end{aligned}$$

#### T. unilateral esquerdo

#### Hipóteses a testar:

$$H_0: \mu_1 \ge \mu_2 \ vs \ H_1: \mu_1 < \mu_2$$
  

$$\Leftrightarrow H_0: \mu_1 - \mu_2 \ge 0 \ vs$$
  

$$H_1: \mu_1 - \mu_2 < 0$$

Para realizar o teste pretendido calcular:

• 
$$D_i = X_{1i} - X_{2i}, \quad i = 1, ..., n;$$

$$\overline{D} = \overline{X}_1 - \overline{X}_2 = \sum_{i=1}^n \frac{X_{1i}}{n} - \sum_{i=1}^n \frac{X_{2i}}{n} = \sum_{i=1}^n \frac{D_i}{n};$$

$$S_D^2 = \sum_{i=1}^n \frac{(D_i - \bar{D})^2}{n-1}.$$

Ou seja, está-se perante um teste de hipóteses para a média no caso em que a população segue uma distribuição Normal da qual se desconhece a sua variância. Esta situação já foi descrita nos capítulos anteriores (secção 8.3.2).

Desta forma, as hipóteses a testar podem escritas da seguinte forma:

#### Hipóteses a testar:

$$H_0: \mu_D = 0 \ vs \ H_1: \mu_D \neq 0$$

#### Hipóteses a testar:

$$H_0: \mu_D \le 0 \ vs \ H_1: \mu_D > 0$$

#### Hipóteses a testar:

$$H_0: \mu_D \ge 0 \ vs \ H_1: \mu_D < 0$$

Um professor de estatística seleccionou aleatoriamente um grupo de 10 alunos, aprovados na disciplina pelo regime de frequências, tendo registado as suas notas nas frequências:

| Aluno    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----------|----|----|----|----|----|----|----|----|----|----|
| 1ª freq. | 10 | 11 | 9  | 10 | 18 | 15 | 16 | 13 | 11 | 10 |
| 2ª freq. | 9  | 12 | 12 | 12 | 18 | 14 | 18 | 12 | 13 | 10 |

Ao nível de significância de 5% pode afirmar que as notas médias dos alunos na 1ª frequência são superiores às obtidas na 2ª frequência? Assuma a Normalidade das notas.

ProbabilidadesEstatistica 2019 (uevora.pt)



# Exercício: Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Amostras Emparelhadas)

#### Sejam:

- $X_1$  a v.a. que representa a nota do aluno na 1ª frequência,
- X<sub>2</sub> a v.a. que representa a nota do aluno na 2º frequência,

com 
$$X_1 \sim N(\mu_1 =?; \sigma_1 =?)$$
 e  $X_2 \sim N(\mu_2 = ?; \sigma_2 =?)$ .

$$\alpha = 1\%, \mu_1 > \mu_2$$
?

#### Hipóteses:

$$H_0: \mu_1 \le \mu_2 \ vs. H_1: \mu_1 > \mu_2$$

$$\Leftrightarrow H_0: \mu_1 - \mu_2 \le 0 \ vs. H_1: \mu_1 - \mu_2 > 0$$

como as amostras são emparelhadas

$$\Leftrightarrow H_0: \mu_D \leq 0 \ vs. H_1: \mu_D > 0$$
 (teste unilateral direito).

Estatística de teste:

#### **Estatística de Teste:**

$$T = \frac{\overline{D} - \mu_0}{\frac{S_D}{\sqrt{n}}} \sim t_{n-1}.$$

# Exercício: Teste de Hipóteses para $\mu_1$ - $\mu_2$ (Amostras Emparelhadas)

| Aluno (i)                | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|--------------------------|----|----|----|----|----|----|----|----|----|----|
| 1ª freq. $(x_{1i})$      | 10 | 11 | 9  | 10 | 18 | 15 | 16 | 13 | 11 | 10 |
| $2^{a}$ freq. $(x_{2i})$ | 9  | 12 | 12 | 12 | 18 | 14 | 18 | 12 | 13 | 10 |
| $d_i = x_{1i} - x_{2i}$  | 1  | -1 | -3 | -2 | 0  | 1  | -2 | 1  | -2 | 0  |

$$n = 10$$
;  $\overline{d} = -0.7$  e  $s_d = 1.4944$ .

$$t_{obs} = \frac{-0.7 - 0}{\frac{1.4944}{\sqrt{10}}} = -1.481.$$

#### Decisão (pela região de rejeição):

Pela tabela  $t_{n-1;\,1-\alpha}=t_{9;\,0,95}=1,\!833.$  Logo,  $R.A.:\,]-\infty;\,\,1,\!833[$  e  $R.R.:\,[1,\!833;\,+\infty[$ .

Como  $t_{obs} \in R.A$ . não rejeitar  $H_0$ . Portanto, ao nível de significância de 5%, não existe evidência estatística de que as notas médias obtidas pelos alunos na 1ª frequência sejam superiores às da 2ª frequência.

ProbabilidadesEstatistica\_2019 (uevora.pt)

#### Murteira et al (2015) Capítulo 8

36. Levou-se a efeito um estudo de uma amostra casual de 25 famílias com o objectivo de determinar qual a reacção dos consumidores a uma série de medidas inseridas numa campanha de poupança energética. Foram noticiados e praticados descontos para certos níveis de redução dos consumos. Observaram-se os consumos energéticos das

famílias seleccionadas durante dois meses, um antes e outro depois da campanha,  $X_1$  e  $X_2$  respectivamente, e calculou-se a partir dos registos, para cada família, a diferença dos consumos ( $D = X_1 - X_2$ ) tendo-se obtido uma diferença média de 0.2 kWh e um desvio padrão corrigido ( $s_D'$ ) de 1 kWh. Suponha que a quantidade de energia consumida mensalmente por uma familia segue uma distribuição normal.

- a) Com dimensão de 0.05, que se pode afirmar sobre o êxito da campanha?
- b) Se os valores reportados, diferença média de 0.2 kWh e desvio padrão corrigido  $(s'_D)$  de 1 kWh, se referissem a uma amostra de 225 famílias, que pode afirmar sobre o êxito da campanha? Comente.



## Exercício 36 a)

$$X_1 \equiv \mathcal{E}_0$$
 consumo energítico de uma família (antes da campanha) em KWh  $X_2 \equiv \mathcal{U} \qquad \mathcal{$ 

# Exercício 36 a)

a) Eamfanha tem sucesso se 
$$\mu_1 > \mu_2$$
 (=)  $\mu_1 - \mu_2 > 0$  (=)  $\mu_D > 0$ 

H.: 
$$\mu_1 - \mu_2 \le 0$$
 Vs  $H_1$ :  $\mu_1 - \mu_2 > 0$  (  $\alpha = 0.05$ )

$$\mu_D > 0$$

H.:  $\mu_1 - \mu_2 \le 0$  VS  $\mu_1$ :  $\mu_4 - \mu_2 > 0$  ( $\alpha = 0.05$ )

$$\mu_{D} > 0$$

H. :  $\mu_{1} - \mu_{2} \le 0$  VS H<sub>1</sub>:  $\mu_{1} - \mu_{2} > 0$  (  $\alpha = 0.05$ )

# Exercício 36 b)

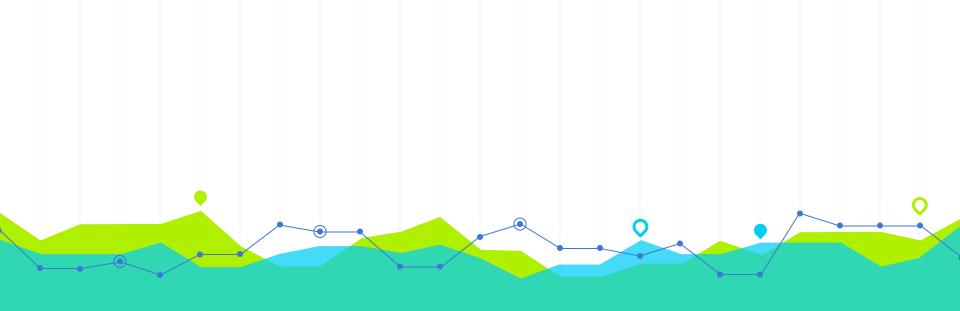
b) Westi easo, sob Ho, teriamos 
$$T \sim t(224)$$
.

$$tobs = \frac{0.2}{1/\sqrt{225}} = 3$$

$$V_T = \left\{ tobs: tobs > t_{224,0.05} \right\} =$$

$$= \left\{ tobs: tobs > 1.96 \right\}$$

<u>Comentário</u>: A dimensão do teste está fixa em 0.05 mas a potência do teste aumenta quando se aumenta o tamanho da amostra. Quanto maior for a potência do teste mais provável é que se rejeite  $H_0$  (se a dimensão do teste estiver fixa). Qualquer desvio em relação ao valor de  $H_0$  pode ser rejeitado, se a amostra for grande o suficiente.



# Testes de Hipóteses para $\sigma^2$

Hipóteses, Estatística de Teste e Decisão

5

### Teste de Hipóteses para $\sigma^2$ : Formulário

#### • POPULAÇÕES NORMAIS

Variância corrigida

| Média                 | $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$                                                                                                            | $\overline{\frac{\overline{X} - \mu}{S'/\sqrt{n}}} \sim t(n-1) \qquad \qquad S'^2 = \frac{1}{n-1} \sum_{i=1}^{n} (1-i)$                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diferença de médias   | $\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}} \sim N(0,1)$                          | $Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^{'2}}{m} + \frac{S_2^{'2}}{n}}} \sim t(\nu)$                                                                             |
|                       | $T = \frac{\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{m} + \frac{1}{n}}}}{\sqrt{\frac{(m-1)S_1'^2 + (n-1)S_2'^2}{m+n-2}}} \sim t(m+n-2)$ | onde $V$ é o maior inteiro contido em $r$ , $r = \frac{\left(\frac{s_1'^2}{m} + \frac{s_2'^2}{n}\right)^2}{\frac{1}{m-1}\left(\frac{s_1'^2}{m}\right)^2 + \frac{1}{n-1}\left(\frac{s_2'^2}{n}\right)^2}$ |
| Variância             | $\frac{nS^2}{\sigma^2} = \frac{(n-1)S^{-2}}{\sigma^2} \sim \chi^2(n-1)$                                                                                               | •                                                                                                                                                                                                        |
| Relação de variâncias | $\frac{S_1'^2}{S_2'^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F(m-1, n-1)$                                                                                                |                                                                                                                                                                                                          |

#### Exercício:

Considere-se uma amostra de dimensão n=9 e variância  $s^2=100$ . Realize um Teste de Hipóteses para testar se o desvio padrão populacional é superior a 4 para o nível de significância  $\alpha=1\%$ .



### Exercício: Teste de Hipóteses para $\sigma^2$

#### Hipóteses:

$$\theta_{csso 1}$$
 |  $X N C N (M, G^2)$   $h = 9$   $\Delta^2 = 100$   
 $\theta_{csso 1}$  |  $\theta_{csso 1}$  |  $\theta_{csso 1}$  |  $\theta_{csso 2}$  |  $\theta_{csso 3}$  |  $\theta_{csso 3$ 

$$E(X) = \mu$$
$$Var(X) = \sigma^2$$

Slides Professora Claúdia Nunes

### Exercício: Teste de Hipóteses para $\sigma^2$

#### **Estatística de Teste:**

$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}_{(n-1)}$$

V. fluch 
$$t = \frac{8(5^2)}{5^2} \sim \chi^2_{(8)}$$

Pesso 2

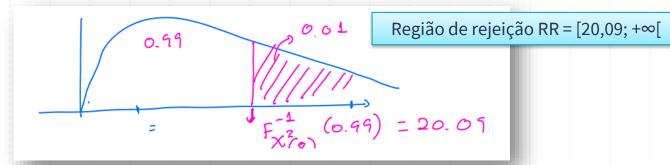
Pesso 2

Pesso 2

Value observed  $t_0 = \frac{8 \times 100}{16} = 50$ 

### **Exercício: Teste de Hipóteses para** $\sigma^2$

Decisão (pela região de rejeição):



Como to= 50> 20.09, l-10 Ho cleve ser réjertade pare d= 1º/0. pare d>, 1º/0

#### **Decisão**:

Rejeita-se H0 para  $\alpha = 1\%$ .

Existe evidência estatística para afirmar que o desvio padrão populacional é superior a 4 para  $\alpha = 1\%$ .

# Cálculo dos Quantis da Distribuição Qui-Quadrado de Probabilidade 1- $\alpha$ e com n-1 g.l.´s

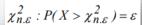
Nível de confiança (1-α=0,99)

Nível de significância (α=0,01)

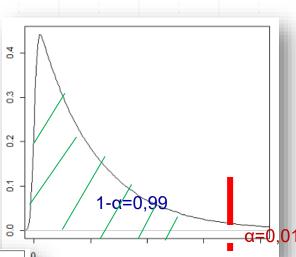
Área total é igual a 1

O nível de significância é  $\alpha$  = 0,01

Logo, pretende-se calcular o quantil da distribuição Qui-Quadrado de probabilidade  $1-\alpha = 0.99$   $\chi^2_{0.99:8} = 20.09$  (ver tabela)



| 3  | .995  | .990  | .975  | .950  | .900  | .750  | .500  | .250   | .100   | .050   | .025   | .010   | .005   | .001   |
|----|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| n  |       |       |       |       |       |       |       |        |        |        |        |        |        |        |
| 1  | .000  | .000  | .001  | .004  | .016  | .102  | .455  | 1.323  | 2.706  | 3.841  | 5.024  | 6.635  | 7.879  | 10.827 |
| 2  | .010  | .020  | .051  | .103  | .211  | .575  | 1.386 | 2.773  | 4.605  | 5.991  | 7.378  | 9.210  | 10.597 | 13.815 |
| 3  | .072  | .115  | .216  | .352  | .584  | 1.213 | 2.366 | 4.108  | 6.251  | 7.815  | 9.348  | 11.345 | 12.838 | 16.266 |
| 4  | .207  | .297  | .484  | .711  | 1.064 | 1.923 | 3.357 | 5.385  | 7.779  | 9.488  | 11.143 | 13.277 | 14.860 | 18.466 |
| 5  | .412  | .554  | .831  | 1.145 | 1.610 | 2.675 | 4.351 | 6.626  | 9.236  | 11.070 | 12.832 | 15.086 | 16.750 | 20.515 |
| 6  | .676  | .872  | 1.237 | 1.635 | 2.204 | 3.455 | 5.348 | 7.841  | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 | 22.457 |
| 7  | .989  | 1.239 | 1.690 | 2.167 | 2.833 | 4.255 | 6.346 | 9.037  | 12.017 | 14.067 | 16.013 | 19.475 | 20.278 | 24.321 |
| 8  | 1.344 | 1.647 | 2.180 | 2.733 | 3.490 | 5.071 | 7.344 | 10.219 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 | 26.124 |
| 9  | 1.735 | 2.088 | 2.700 | 3.325 | 4.168 | 5.899 | 8.343 | 11.389 | 14.684 | 16.919 | 19.023 | 21,666 | 23.589 | 27.877 |
| 10 | 2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 6.737 | 9.342 | 12.549 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 | 29.588 |



 $\chi^2_{0,99;8} = 20,09$ 

#### Regra de decisão pelo valor-p: Valor-p = $P(X^2 \ge VOE) < \alpha \Rightarrow Rejeita$ -se $H_0$ para $\alpha$

Área total é igual a 1

 $P(X^2 \le 50) > 0.999$ 

0.1

# Cálculo do Valor-p quando a Estatística de Teste tem Distribuição Qui-Quadrado

#### Decisão (pelo valor-p):

valor-p =  $P(X^2 \ge 50) \sim P(X^2 \ge 26,124) = 0,001$  (ver a tabela)

 $\chi_{n,c}^2: P(X > \chi_{n,c}^2) = \varepsilon$ 

| •  | ,,,,  | .,,,,, | .715  | .,,,,, | .,,00 | .150  | .500  | .230   | .100   | .050   | .023   | .010   | .005   | .001   |
|----|-------|--------|-------|--------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| n  |       |        |       |        |       |       |       |        |        |        |        |        |        |        |
| 1  | .000  | .000   | .001  | .004   | .016  | .102  | .455  | 1.323  | 2.706  | 3.841  | 5.024  | 6.635  | 7.879  | 10.827 |
| 2  | .010  | .020   | .051  | .103   | .211  | .575  | 1.386 | 2.773  | 4.605  | 5.991  | 7.378  | 9.210  | 10.597 | 13.815 |
| 3  | .072  | .115   | .216  | .352   | .584  | 1.213 | 2.366 | 4.108  | 6.251  | 7.815  | 9.348  | 11.345 | 12.838 | 16.266 |
| 4  | .207  | .297   | .484  | .711   | 1.064 | 1.923 | 3.357 | 5.385  | 7.779  | 9.488  | 11.143 | 13.277 | 14.860 | 18.466 |
| 5  | .412  | .554   | .831  | 1.145  | 1.610 | 2.675 | 4.351 | 6.626  | 9.236  | 11.070 | 12.832 | 15.086 | 16.750 | 20.515 |
| 6  | .676  | .872   | 1.237 | 1.635  | 2.204 | 3.455 | 5.348 | 7.841  | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 | 22.457 |
| 7  | .989  | 1.239  | 1.690 | 2.167  | 2.833 | 4.255 | 6.346 | 9.037  | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 | 24.52  |
| 8  | 1.344 | 1.647  | 2.180 | 2.733  | 3.490 | 5.071 | 7.344 | 10.219 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 | 26.124 |
| 9  | 1.735 | 2.088  | 2.700 | 3.325  | 4.168 | 5.899 | 8.343 | 11.389 | 14.684 | 16.919 | 19.023 | 21.666 | 23.589 | 27.871 |
| 10 | 2.156 | 2.558  | 3.247 | 3.940  | 4.865 | 6.737 | 9.342 | 12.549 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 | 29.588 |
|    |       |        |       |        |       |       |       |        |        |        |        |        |        |        |

#### Decisão:

Rejeita-se H0 para  $\alpha = 1\%$ , pois valor-p ~ 0,001 < 0,01. Existe evidência estatística para afirmar que o desvio padrão populacional é superior a 4 para  $\alpha = 1\%$ .



# Obrigada!

Questões?